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Abstract:  The Sustainable Fisheries Act (SFA) and Code of Conduct for Responsible Fisheries Management require 
restoration of fishery resources and a matching of capacity to desired resource levels.  There is, thus, a need to reduce 
harvesting capacity throughout many of the fisheries of the world.  Yet, even the term capacity is not well defined, and it is 
even more complicated to measure.  In this paper, we introduce several definitions and measures of capacity that are 
consistent with economic theory and empirical analyses.  Since economic data on production activities are usually 
unavailable, we introduce the concept of data envelopment analysis (DEA) which may be used to calculate a physical or 
primal-based concept of capacity in fisheries.  We initially introduce DEA and dispel many of the myths believed to be 
problems of DEA.  We discuss how DEA may be used to calculate capacity in single and multiple-species fisheries.  We also 
introduce how the DEA-derived measure of capacity may be formulated to include undesirable outputs (e.g., bycatch).  
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1. Introduction 
 

In 1997, the Food and Agriculture Organization 
(FAO) of the United Nations (1997) reported that nearly 
60% of the world’s major fisheries were either mature or 
senescent.  An earlier report by FAO (1995) stated that of 
the 44% of the fish stocks for which formal stock 
assessments were available, 16% were overfished, 6% 
were depleted, and 3% were slowly recovering.  Excess 
harvesting capacity has been cited as a major factor 
contributing to overfishing in many of the world’s 
fisheries (FAO 1997).  Since 1996, there has been an 
international effort to reduce harvesting capacity, and 
subsequently, match capacity to resource levels. 

 
Yet, even the basic concept, capacity, is neither 

uniquely defined nor easily assessed.  There is debate 
about whether or not capacity should be defined from an 
economic perspective or relative to a technological or 
primal perspective (Morrison 1985a; Kirkley and Squires 
1999).  A broad and practical economic definition of 
capacity is that it is the output level that would be 
produced if the producer realized a given behavioral 
objective (e.g., maximized profits) and operated under 
customary and usual operating procedures. This economic 
definition is relatively consistent with that used by the 
U.S. Census Bureau which reports annual assessments of 
capacity to the Federal Reserve, the Federal Emergency 
Management Administration, the International Trade 

Commission,, and the Bureau of Export Administration.  
Alternative definitions and potential measures based on 
other criteria are summarized in Morrison (1985a), 
Kirkley and Squires (1999), and F#re et al (2000). 

 
An alternative definition, and one which is receiving 

increasing attention by individuals interested in estimating 
harvesting capacity for a fishery, is a technological-
engineering, or more formally a technological-economic 
definition.  Following Johansen (1968), capacity is the 
maximum potential output that could be produced given 
that the availability of the variable factors is not limiting.  
Kirkley et al. (2000) offer a modified definition of 
Johansen’s definition by considering customary and usual 
operating procedures. 

 
In the case of fisheries, estimation of the economic 

concept of harvesting capacity is complicated because 
appropriate economic data (e.g., costs and earnings 
information) are not widely available.  The absence of 
appropriate economic data and a national and 
international urgency to calculate harvesting capacity in 
fisheries has increased research interest in options for 
estimating capacity. 

 
In this paper, we present data envelopment analysis 

(DEA) as one approach for estimating and assessing 
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capacity and capacity utilization (CU) in fisheries. 
Initially, we provide an introduction and overview of 
DEA—a mathematical programming approach that may 
be used to estimate technical efficiency (TE), capacity, 
and CU.  We subsequently discuss the various restrictions 
often thought to characterize the technology with the 
DEA framework. We next provide an overview and 
discussion of many of the typical criticisms of DEA. 
Potential modifications of the DEA framework that might 
be useful for exploring other issues in fisheries (e.g., 
capacity reduction programs and bycatch mitigation 
strategies) are next discussed. We then introduce the 
Johansen (1968) concept of capacity that was made 
operational by F#re et al. (1989) and later modified by 
F#re et al. (2000) to better accommodate economic 
concerns and multi-product technologies. We conclude 
the paper with an empirical analysis, based on DEA, of a 
small fleet of sea scallop vessels.   

 
2.  Data Envelopment Analysis 
 

Data envelopment analysis (DEA) is a mathematical 
programming approach for estimating the relative 
technical efficiency (TE) of production activities.  The 
term DEA was originally proposed by Charnes et al. 
(1978).  The Charnes et al. work extended the Farrell 
(1957) multiple input, single output measure of TE to the 
multiple-output, multiple input technology.  Since the 
early Charnes et al. work, however, DEA has developed 
and expanded to include a wide variety of applications.   
DEA has been used to assess TE, scope, scale, and 
allocative efficiency.  It has also been used to estimate 
optimal input utilization, productivity, identify strategic 
groups, determine benchmarks and total quality 
management programs, estimate social and private costs 
of regulating undesirable outputs and capacity (Kirkley et 
al. 2000).  The DEA models have been extended from the 
static, deterministic models to include dynamics and 
stochastic aspects (F#re and Grosskopf 1996; Banker 
1990; and Resti 2000).  Procedures have been developed 
to deal with temporal aspects and balanced panel data 
(e.g., the window analysis approach of Charnes et al. 
(1994)). 

  
In addition to being a mathematical programming 

approach for estimating TE, what can we say about DEA?  
It is non-statistical and non-parametric.  When we say it is 
non-statistical, we are implying that estimates are not 
based on any statistical distribution (e.g., the normal) and 
noise is not explicitly considered in the estimation.; that 
does not mean, however, that statistical tests of the 
various estimates cannot be performed.  An alternative 
view is that DEA is deterministic.  When we refer to DEA 
as being non-parametric, we are referring to the fact that 
we do not have to assume a particular functional 
relationship between the inputs and outputs; we do not 
have to assume any statistical distribution; and we do not 

have to estimate parameters based on assumed statistical 
distributions. 

 The DEA technique permits an assessment of the 
performance or TE of an existing technology relative to 
an ideal, “best-practice,” or frontier technology (Coelli et 
al. 1998).  The frontier or best-practice technology is a 
reference technology or production frontier that depicts 
the most technically efficient combination of inputs and 
outputs (i.e., output is as large as possible given the 
technology and input levels, or input levels are as small as 
possible given the output levels).  The frontier technology 
is formed as a non-parametric, piece-wise linear 
combination of observed “best-practice” activities.  Data 
points are enveloped with linear segments, and TE scores 
are calculated relative to the frontier technology.   

 
The DEA technique may be used to estimate TE 

scores or efficient levels of inputs or outputs from either 
an input or output orientation or from an orientation that 
allows both input and output levels to simultaneously 
change. The input-orientation provides estimates of the 
amount by which inputs could be proportionally reduced 
and still produce a given output level.  The output-
orientation provides estimates of the amount by which 
outputs could be proportionally expanded given existing 
input levels.  The orientation that allows both inputs and 
outputs to change by the same proportion (inputs are 
proportionally decreased while outputs are proportionally 
increased) provides a measure of what is referred to as 
hyperbolic graph efficiency; it may be generalized by 
what is called a directional distance function. 

 
Following F#re et al. (1994), we have a production 

technology transforming inputs x = (x1,x2,…,xN) � 
�

NR = 

{x : x � 
�

NR , x �0} into outputs u = (u1,u2,…,uM ) � 

�

MR which can be represented by the output 
correspondence, P, the input correspondence, L, or the 
graph (GR) of the technology. The output correspondence 

 

P: 
�

NR o R
M

2 �       (1) 
 

maps inputs x � 
�

NR into subsets P(x) I
�

MR of outputs.  
The set P(x) is referred to as the output set; it indicates the 
collection of all outputs u � 

�

MR , which can be produced 

from the input vector x � 
�

NR .  There is also an input 

correspondence that maps outputs u �
�

MR into subsets of 

inputs L(u) I
�

NR  
 

L: 
�

MR o R
N

2 �       (2) 
 
The input set L(u) indicates all inputs x  � 

�

NR that yield 

at least outputs u � 
�

MR .  With (1) or (2), we can depict 
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the technology from either the input correspondence or 
the output correspondence (F#re et al. 1994).   
 

The input and output sets provide representations of 
the technology in terms of input and output quantities.  
Input substitution possibilities are modeled with the input 
set, and output substitution possibilities are modeled by 
the output set.  We can also derive the relationship 
between the input and output sets (i.e., the Graph (GR) of 
the technology) (F#re et al. 1994).  The graph models 
input substitution, output substitution, and the input-
output transformation.  The graph may be derived from 
either an input or output correspondence, and the input 
and output correspondences, respectively, may be derived 
from the GR as 

 
P(x) = {u: (x,u) �GR}      (3) 
 
L(u) = {x: (x,u) �GR}      (4) 
 

The relationship between inputs, outputs, and the graph 
(GR) may be summarized as  
 
u �P(x) � x �L(u) � (x,u) �GR     (5) 

 
Thus far, no assumptions have been imposed on the 

underlying technology. The GR specification and the 
input and output correspondences allow the technology to 
be specified from either an input orientation, an output 
orientation, or directly in terms of the input-output 
transformation frontier.  Numerous alternative 
specifications are presented in F#re et al. (1994).   

 
Two very important aspects of the input and output 

correspondences that we need for understanding TE are 
returns to scale and disposability.  Thus far, we have not 
imposed any returns to scale or disposability conditions.  
A technology may exhibit constant, non-increasing, and 
non-decreasing returns to scale.  Disposability actually 
refers to assumptions about economic regions that are 
often assumed for a normal technology.  From an input 
orientation, we normally assume that isoquants cannot 
bend backwards; this assumption is the case of strong 
disposability for an input orientation.  From an output 
orientation, we normally assume the technology cannot 
have an upward sloping portion of the transformation 
frontier; this is the case of strong disposability from an 
output orientation.  In contrast, we can have weak 
disposability from either an input or output orientation.  
From an input orientation, if the technology is weakly, but 
not strongly, disposable, input usage may be excessive 
and we may have congestion. Strong disposability implies 
weak disposability, but weak disposability does not imply 
strong disposability. If the technology is weakly, but not 
strongly, disposable in outputs, it may not be possible to 
reduce the level of one output without reducing the level 
of another output.  For most production analysis, strong 

disposability in inputs is assumed (Reinhard et al. (1999) 
provides a listing of research on weak disposability). 

 
Returning to our input and output orientation and DEA 

framework, consider J producers that use N inputs to 
produce M outputs.  We let ujm equal the quantity of the 
mth output produced by the jth producer, and xjn the level 
of the nth input used by the jth producer.  Inputs and 
outputs are assumed to satisfy the following conditions: 

 
       (i)       ujm  t 0, xjn t 0 

 

 (ii)      jm
j

J

u m M
 

¦ !  
1

0 1 2, , , . . . ,  

(iii)      jn
n

N

x j J
 

¦ !  
1

0 1 2, , , , . . .,  

(iv)      jn
j

J

x n N
 

¦ !  
1

0 1 2, , , ,. . . . . ,  

(v) jm
m

M

u j J
 

¦ !  
1

0 1 2, ,. . . , . . . ,  

 
Condition (i) imposes the assumption that each producer 
uses nonnegative amounts of each input to produce 
nonnegative amounts of each output.  Conditions (ii) and 
(iii) require total or aggregate production of positive 
amounts of every output, and total or aggregate 
employment of positive amounts of every input.  
Conditions (iii) and (v) require that each firm employ a 
positive amount of at least one input to produce a positive 
amount of at least one output.  Zero levels are permitted 
for some inputs and outputs. 
  

We next introduce the vector z = (z1,z2,…,zJ) � �
JR  

which denotes the intensity levels at which each of the J 
firms or activities are operating.  The z vector allows us to 
decrease or increase observed production activities (input 
and output levels) in order to construct unobserved but 
feasible activities.  More important, the z vector provides 
weights that are used to construct the linear segments of 
our piece-wise, linear technology (i.e., the technology 
constructed by DEA).  As previously stated, we can 
model our technology from either an input or output 
orientation.  We can also model the technology relative to 
various returns to scale.  Models may also be constructed 
to reflect different disposability conditions. 

  
Starting with the piece-wise formulation of the input 

set representation of the technology given constant returns  
to scale (C) and strong disposability (S) of inputs and 
outputs, we have 
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L(u
C,S) = { : , , . .. ,x u z u m Mm j
j

J

jmd ¦  
 1

1    (6)

            j
j

J

jn n
Jz x x n N z R

 

�¦ d  �
1

1, , .. . , , }  

 
Non-increasing returns to scale (NIRS) and strong 
disposability require imposing the additional constraint on 
the intensity values 

L(u
N,S) = { : , , . . . ,x u z u m Mjm j
j

J

jmd ¦  
 1

1    (7) 

    j
j

J

jn n
J

j
j

J
Mz x x n N z R z u R

 

�

 

�¦ d  � ¦ d �
1 1

1 1 0, , . . . , , , . },  

 
Variable returns to scale (VRS), L(u
V,S), requires 
changing the constraint on the summation of the intensity 
variables from � 1.0 to = 1.0.   
 

Specifying the piece-wise formulation of the input set 
representation of the technology L(u
(C,N,V),W)  subject 
to weak disposability of inputs, (W), requires changing 
the inequality constraint in Eq. (6) to an equality 
constraint  

 

j
j

J

jn nz x x n N
 

¦   
1

1, , .. . ,      (8) 

 
which is the case when all inputs are weakly disposable.  
The more likely case, however, is when only a subset of 
the inputs is weakly disposable.  This latter case can be 
accommodated by partitioning the input variables into 
those that are strongly disposable and those that are only 
weakly disposable, and reformulating the technology with 
� constraints on the strongly disposable inputs and 
equality constraints on the weakly disposable inputs.   
 

The output possibilities set can also be used to 
construct a piece-wise technology.  Under constant 
returns to scale and strong disposability, we have the 
following 

 

P(x 
 C,S)  =  { : , , . .. ,u u z u m Mm j
j

J

jmd ¦  
 1

1    (9) 

                              j
j

J

jn n
Jz x x n N z R

 

�¦ d  �
1

1, , .. . , , }  

 
Non-increasing and variable returns to scale can be 
modeled by imposing the same constraints on the 
summation of the intensity variables as done from the 
input orientation.  Weak disposability in all outputs 
requires the following equality constraint  
 

u z u m Mm j
j

J

jm ¦  
 1

1, , .. . ,    (10) 

 
Weak disposability in a subvector of outputs can be 
accomplished in the same fashion as done for weak 
disposability in a subvector of inputs (i.e., partition the 
outputs into strong and weak disposable sets and impose 
the necessary inequality and equality conditions). 
 

Given a large range of options for specifying the 
technology, TE may be estimated using DEA from either 
an input or output orientation.  The input orientation 
permits us to measure TE as the largest proportion that 
inputs could be reduced and still produce the same level 
of output.  The output orientation permits us to measure 
TE as the largest proportion by which outputs could be 
increased without changing the level of inputs.   

 
Using the piece-wise technology, L( u
 C,S),  given by 

Eq. (6), an input-oriented measure of TE can be 
calculated for a given decision making unit (DMU) or 
observation as the solution to a linear programming (LP) 
problem 

 
TEij(uj,xj 
 C,S) = 

O

O
,

m in
z

   (11) 

subject to u m Mjm j
j

J

jmz ud  
 

¦
1

1, , ... , , 

                 j
j

J

jn j nz x x n N
 

¦ d  
1

1O , , . . . , ,  

                       j j Jz t  0 1 2, , ,...,  

 
where TEij(uj,xj 
 C,S) is technical efficiency of any jth 
observation given constant returns to scale and strong 
disposability; � is the measure of TE and equals the 
reciprocal of an input distance function which equals the 
ratio of the minimal feasible input usage to the current 
input usage, 0 � � � 1.0; z is the intensity vector which 
enables the benchmark or “best-practice” frontier to be 
constructed; J is the number of DMUs; M is the number 
of outputs; and N is the number of inputs.  The solution to 
problem (11) provides a measure of TE and the potential 
radial or proportional reduction in all inputs with no 
change in the output level (e.g., a TE of 1.0 implies 
technically efficient production; a value of TE < 1.0 (e.g., 
.75)  implies that production is technically inefficient and 
all inputs corresponding to the DMU could be scaled back 
by the TE score (e.g., by 25% or to 75% of their original 
value)).  The LP problem is solved for every observation.  
Modifications to reflect NIRS and VRS only require 
imposing the constraints presented in Eq. (7) and that 
required for VRS.  Weak disposability requires the 
constraint in Eq. (8).   
 

The piece-wise technology corresponding to the output 
set, P(x 
 C,S) ,  is similarly constructed 
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TEoj(uj,xj 
C,S) = 
O

T
,

m ax
z

   (12) 

      subject to T u z u m Mjm j
j

J

jmd ¦  
 1

1, , . . . , ,  

                      j
j

J

jn j nz x x n N
 

¦ d  
1

1, , .. . , ,  

                       jz j Jt  0 1 2, , , . . . ,  

 
where TEo is TE for an output orientation and indicates 
the maximum feasible or proportional expansion in all 
outputs; � is the inverse of an output distance function 
and equals the ratio of the maximum potential output to 
the observed output level; and the zs are used to construct 
the reference technology.  The value of � is restricted to � 
1.0; some existing software packages, however, solve 
problem (12) in terms of 1/�, where � - 1.0 is the 
potential proportionate increase in outputs. If � = 1.0, 
production is technically efficient; if � > 1.0, production 
is inefficient and output levels could be increased by � - 
1.0.  Imposing NIRS and VRS requires imposing the 
same constraints identified for the input oriented problem; 
weak disposability requires the constraint of Eq. (10). 
 

A remaining aspect of DEA is that of scale efficiency 
(SE). Scale efficiency is a measure of whether or not a 
producing unit is operating at an optimal scale of 
operation.  Measures of SE offer information that may be 
particularly useful for formulating fishery management 
plans; that is, what should be the optimal scale of 
operation?  Scale efficiency equals the ratio of TECRS to 
TEVRS.  Production is scale efficient if SE = 1.0,  or if the 
TECRS = TEVRS.  Scale efficiency may be calculated from 
either an input or output-orientation.    

 
The measure of SE, however, only indicates whether 

or not a firm is scale efficient.  The measure does not 
indicate whether or not scale inefficiency occurs because 
a production activity is operating at too large or too small 
a scale (i.e., is production characterized by decreasing or 
increasing returns to scale?).  Assessing whether or not an 
activity, which is scale inefficient, is operating at too 
large or too small a scale only requires solving another 
DEA problem—the NIRS model.  By comparing TENIRS 
to TECRS, we can determine whether or not the 
inefficiency is because of increasing or decreasing returns 
to scale.  In general, and without proof, we have the 
following conclusions regarding scale efficiency: (1) if 
SEI < 1.0 from an input-orientation, we have scale 
inefficiency; (2) for SEI < 1.0 and TEiNIRS = TEiCRS, scale 
inefficiency is because of increasing returns to scale (i.e., 
the producing unit is operating at an inefficiently small 
scale); (3) for SEI < 1.0 and TEiNIRS > TEiCRS, scale 
inefficiency is caused by operating at an inefficiently 
large scale or in the region of decreasing returns to scale; 
(4) if SEo > 1.0 from an output-orientation, production is 
scale inefficient; (5) if SEo > 1.0 and TEoNIRS = TEoCRS, 

production is scale inefficient because of increasing 
returns to scale; and (6) if SEo > 1.0 and TEoNIRS > 
TEoCRS, production is scale inefficient because of 
decreasing returns to scale. 
 
3.  Perceived Restrictions on Technology and Myths 

 
Perhaps because of misunderstanding, numerous 

researchers have criticized DEA for assuming various 
restrictions on the underlying technology.  In this section, 
we discuss some of the typical criticisms of DEA relative 
to perceived restrictions and attempt, without 
mathematical proof, to dispel these criticisms.   

 
In words, we assume that the underlying technology 

satisfies certain basic properties or axioms (F#re and 
Grosskopf 1996).  We initially assume that it is always 
possible to produce no output, and it is not possible to 
produce an output without an input.  Our technology may 
be subject to weak or strong disposability in inputs or in 
outputs.   We also assume that the output correspondence 
or set (P(x)) is bounded for any input vector x; only finite 
amounts of output can be produced by finite amounts of 
inputs.  In practice, we assume convexity of the input and 
output sets.  We also typically assume a specific returns to 
scale (CRS, NIRS, and VRS). We impose assumptions (i) 
through (v).  The preceding properties are the minimal 
required set.   

  
A common criticism of DEA is that it assumes the 

technology has either fixed input proportions or fixed 
output proportions.  This criticism is likely because TE 
scores represent radial contractions of inputs or 
expansions of outputs.  The radial change simply provides 
a convenient way to examine changing inputs or outputs 
relative to efficient production.  The technology is not, 
however, assumed to have fixed input or output 
proportions.  In fact, inclusion of slacks, calculation of the 
Russell (1985) TE measure, or the directional distance 
function explicitly permit a nonradial change in inputs or 
outputs (F#re et al. 1994; Coelli et al. 1998).  Slacks occur 
whenever sections of the piece-wise frontier run parallel 
to the axes.  The non-radial measure of TE is consistent 
with Koopmans’ (1951) notion of TE, which requires a 
firm to operate on the frontier and have zero slacks. 

  
Another common assumption often thought to 

characterize the technology relative to a multiproduct, 
multiple input technology is separability between inputs 
and outputs.  As illustrated in F#re and Primont (1995), 
however, input-output separability is not imposed by the 
basic DEA model. 

  
Another perceived assumption is that DEA imposes 

zero input and output substitution possibilities.  This is 
likely a result of early texts on LP, which often stated that 
the LP specification of the technology imposed zero 
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substitution possibilities.  Numerous recent texts, 
however, have demonstrated that zero substitution 
possibilities need not be imposed by the LP specification.  
Moreover, the isoquants or production possibility curves 
corresponding to the DEA-derived best-practice frontiers 
explicitly permit substitution. 

  
4.  Common Criticisms of DEA 

 
Of the many objections to DEA, it is perhaps the non-

stochastic nature that generates the most criticism.  With 
DEA, all deviations from the frontier are attributed to 
inefficiency.  The DEA does explicitly account for 
stochastic events such as bad weather, poor luck, or 
measurement error in the data.  In contrast, the oft-used 
stochastic production frontier (SPF) does specifically 
accommodate the possible influence of measurement 
errors and other noise upon the frontier.  In the case of 
measurement error, however, the SPF also may be an 
inappropriate specification; Goldfeld and Quandt (1972) 
have shown that if the dependent variable, but not the 
independent variable, is observed with error, the 
stochastic error term should be additive in the 
specification of a multiplicative technology.  If so, it may 
difficult to construct the appropriate maximum-likelihood 
function necessary to estimate TE with the SPF. 
 

To address the issue of DEA being non-stochastic, 
there has been an increasing emphasis on developing a 
stochastic DEA (Banker 1990; Resti 2000).  Resti offers 
multiplicative and heteroscedastic multiplicative 
stochastic DEA models; Resti also presents a detailed 
comparison of deterministic and stochastic DEA and SPF 
models.  At the present time, however, developments in 
stochastic DEA appear to be too limited to adequately 
evaluate, and thus, the criticism of DEA being non-
stochastic will likely remain. 

 
Another criticism of DEA is that it is non-statistical.  

This may be an appropriate criticism.  DEA does not yield 
estimates that can be easily validated with conventional 
statistical procedures.  To address this problem, some 
researchers have recommended bootstrapping, which does 
permit confidence intervals to be estimated.  In addition, a 
wide variety of non-parametric techniques have been 
employed to examine various properties of the TE 
estimates (Banker 1990). 

 
Sensitivity to outliers has been another criticism of 

DEA (Coelli et al. 1998).  Thompson et al. (1990) and 
Burgess and Willson (1993), however, offer evidence to 
the contrary.  Sensitivity to outliers may also pose 
problems for estimating the SPF or any regression 
relationship.  As such, the sensitivity issue is probably 
over-exaggerated.   

 

Another common but erroneous criticism is that DEA 
does not adequately address the underlying economics.  It 
is a primal approach.  This is a serious misconception of 
DEA.  DEA can easily accommodate economic behavior 
by using cost and revenue specifications.  F#re et al. 
(1997) offer one approach for estimating profit efficiency 
using a DEA model.  More important, the economic-
based DEA models allow decomposition of economic 
efficiency into technical and allocative components (F#re 
et al. 1994; Coelli et al. 1998). From a cost or revenue-
based framework, total economic efficiency (EE) can be 
decomposed into the product of allocative (AE) and 
technical efficiency (TE).  Moreover, TE can be further 
decomposed into scale efficiency (SE), congestion (CN), 
and a residual TE component (TE(u,y
V,W)), where the 
residual is a TE measure given variable returns to scale 
and weak disposability.  Overall, EE can subsequently be 
decomposed into the product of AE, SE, CN, and 
TE(u,y
V,W) relative to a cost (input) orientation or 
revenue (output) orientation (F#re et al. (1994) and Coelli 
et al. (1998) provide detailed discussions on EE and the 
relative decompositions). 

  
Coelli et al. (1998) offer 11 possible limitations that 

one may encounter in conducting a DEA, and a 
comparison of the advantages and disadvantages of DEA 
and the SPF approach.   They also note that the 11 
problems are likely applicable to the SPF approach.  
Coelli et al. conclude that the SPF approach may be more 
applicable in situations where the data are heavily 
influenced by measurement error and random effects. 

  
5. Fisheries and Potential Modifications to DEA 

 
For all the potential disadvantages of DEA, it offers a 

powerful framework for analyzing various issues in 
fisheries. First, it can model multiple output-multiple 
input technologies.  DEA models do not impose any 
specific functional form on the underlying technology and 
technical interactions.  Last, DEA permits an assessment 
of congestion efficiencies. 

  
The technology of many fisheries involves multiple 

outputs and multiple inputs.  Management and regulation 
are increasingly focusing on the multi-species nature of 
most fisheries. DEA offers a convenient framework for 
analyzing TE in multi-species fisheries. Concurrently, 
managers are becoming increasingly concerned with 
controlling bycatch and preventing habitat damage; these 
two issues may be equated to the case of undesirable 
outputs and weak disposability in outputs.  The DEA 
framework can easily accommodate analysis of TE and  
issues related to undesirable inputs or outputs.  The 
disposability properties can also be used to model input or 
output congestion (e.g., the case of using too much of an 
input).  The concept of congestion in DEA may have 
applicability to the examination of the possible 
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relationship between fleet size and technological 
externalities in production.  

 
6.   DEA, Capacity, and Fisheries 
 

DEA offers a particularly convenient framework for 
estimating capacity in fisheries because it allows 
maximum output to be estimated conditional only on the 
fixed factors.  Alternatively, DEA easily facilitates the 
calculation of the concept of capacity proposed by 
Johansen (1968).  F#re et al. (1989) recognized the 
potential consistency between the Johansen definition of 
capacity and DEA.  Johansen (p. 50) defined capacity as 
“the maximum output that can be produced per unit of 
time with the existing plant and equipment provided that 
the availability of the variable factors is not restricted.” 
F#re et al. (1989) illustrated that capacity at the plant level 
could be estimated by partitioning the fixed (Fx) and 
variable inputs (Vx) and solving the following output-
oriented, DEA problem: 

o cj
z

T E M a x 
T O

T
, ,

    (13) 

 subject to T u z u m Mjm j
j

J

jmd ¦  
 1

1, , . . . , ,  

j
j

J

jn j n xz x x n F
 

¦ d �
1

,  

j
j

J

jn jn j n xz x x n V
 

¦  �
1

O ,  

 jz j Jt  0 1 2, , , . . . ,  

 jnO t 0,   

where � is a measure of TE (� � 1.0).  If we multiply the 
observed output by �, we obtain an estimate of capacity 
output.  Capacity can also be estimated by solving 
problem (13) without the variable input constraints. 
  

Problem (13) imposes strong disposability in outputs 
and constant returns to scale.  Problem (13) was initially 
proposed by F#re et al. (1989) as an approach for 
assessing capacity when data were limited to input and 
output quantity information; that is, economic data such 
as cost and earnings information and information on input 
and output prices were not available.  As such, problem 
(13) is a technological-engineering concept.  Since 
estimates are based on actual data, however, estimates of 
capacity obtained from solutions to problem (13) 
implicitly reflect the underlying economics.  We offer, 
therefore, that an estimate of capacity derived from 
problem (13) should be referred to as a technological-
economic measure of capacity.  

 
In addition to obtaining an estimate of capacity, 

problem (13) together with problem (12) may be used to 
estimate an unbiased measure of capacity utilization 
(CU).  F#re et al (1989) demonstrated that the ratio of an 
output oriented measure of TE, with fixed and variable 

inputs included, to an output-oriented measure of TE, 
with variable inputs excluded, yielded a relatively 
unbiased measure of CU: 
 

C U T E

T E
o

o c
      (14) 

 
Although the focus of F#re et al. was on obtaining an 
unbiased estimate of CU, the F#re et al. CU measure 
permits an assessment of whether or not deviations from 
full capacity are because of inefficient production or less 
than full utilization of the variable and fixed inputs.  In 
contrast to the CU measure in Eq. (14), the conventional 
practice for measuring CU has been to divide observed 
output by capacity output. 

 
Solutions to problem (13) may be used to estimate a 

variable input utilization rate. The ith variable input 
utilization rate is estimated as follows (F#re et al. (1994)): 

jn
j jv ij

J

jv i
x

z x

x
n V*

*
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¦

�
 1

   (15) 

where �* equals the ratio of the level of the ith variable 
input required to produce the capacity level to the 
observed usage of the ith variable input; the numerator 
equals the optimal level; and the denominator equals the 
observed usage of the ith variable input.  A value of � > 
1.0 indicates a labor shortage relative to capacity 
production; � < 1.0 implies excess labor. 
  

The use of DEA to estimate capacity need not be 
restricted to the primal or technological-engineering 
concept of capacity.  If sufficient data on input or output 
prices are available, it is possible to estimate TE, capacity, 
CU, and optimal variable input usage using a cost or 
revenue-based DEA problem. F#re et al. (2000) illustrate 
how TE, capacity, and CU for a multiproduct, multiple 
input technology can be estimated either directly by 
solving respective revenue maximization or cost 
minimization DEA problems similar to problem (13) or 
by exploiting the properties of duality. 

  
A potential criticism of the DEA-based assessment of 

capacity, particularly relative to fisheries, is that capacity 
is estimated subject to radial expansions of outputs. The 
use of a radial measure may understate capacity and 
subsequently lead to management that permits excess 
harvesting of some species.  This is a fair criticism, but 
not one that cannot be overcome. One may use Koopmans 
definition of TE, which indicates that a firm is TE only if 
it operates on the frontier, and there are no slacks.   The 
multi-stage DEA algorithm of Coelli (1997) may then be 
used to estimate TE.  The Coelli routine involves a 
sequence of radial DEA models to identify projected 
efficient points which have input and output mixes as 
similar as possible to those of the inefficient points; 
unlike many other DEA routines, the Coelli approach is 
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invariant to the units of measurement.  The Coelli multi-
stage routine, however, may not yield solutions if there 
are some zero outputs. A modified Russell measure may 
also be used to estimate a non-radial measure of TE when 
there are zero outputs (F#re and Lovell 1978).  

 
6. Capacity in Fisheries: An Empirical Illustration  

 
In this section, we illustrate the use of DEA to 

estimate capacity in a fishery.  Our data set consists of trip 
level observations on output, days at sea, crew size, stock 
abundance, and vessel characteristics for nine U.S. 
northwest Atlantic, sea scallop, Placopecten 
magellanicus, dredge vessels operating between 1987 and 
1990.  For the purposes of illustrating DEA, however, we 
restrict our analysis to annual observations.  We first 
solve problem (12) subject to CRS, VRS, and NIRS; we 
do this to examine TE and scale efficiency.  We then 
solve problem (13) imposing CRS to be consistent with 
the long-run competitive equilibrium.  We then obtain 
estimates of capacity, CU and the variable factor, full 
input utilization levels.  

 
Sea scallops are harvested offshore between Maine 

and North Carolina.  The primary gear is the dredge.  The 
primary landed form is shucked meats (i.e., the muscle). 
The major U.S. fishing areas are Georges Bank, Mid-
Atlantic, and what is referred to as DelMarVa (Delaware, 
Maryland, and Virginia).  There are approximately 334 
vessels licensed to harvest scallops in the Exclusive 
Economic Zone (EEZ) (Kirkley et al. 2000).  There are 
approximately 215 full-time, scallop vessels. As of 1998, 
there were 120 vessels between 5 and 50 gross registered 
tons (GRT); 82 vessels between 51 and 150 GRT; and 
132 vessels larger than 150 GRT.  
Table 1.  Vessel characteristics of 9 sea scallop vesselsa 

 
Vessel size, measured by GRT, ranged from 124 to 

181 (Table 1).  Engine horsepower (HP) ranged from 520 
to 620.  Dredge sizes were 13 and 15 feet. Vessel 
characteristics served as the fixed factors of production in 
our analysis.  Average annual output ranged from 
127,733.3 pounds of sea scallop meats for vessel 2 to 
172,269.0 pounds for vessel 1 (Table 2). The average 
annual number of days ranged from 226.5 for vessel 3 to 
258.8 for vessel 6.  Average manpower, measured in man-

days, ranged from a low of   2,270.0 for vessel 9 to 
2,474.7 for vessel 1.  We used days at sea and man-days 
as measures of our variable inputs.  We also included a 
measure of stock abundance, which was measured in 
terms of baskets per tow and weighted by number of days 
per trip to obtain an annual measure (Kirkley et al. 2000).  
 
a GRT is gross registered tons; HP is engine horsepower;             
and Dredge is the width of the dredge in feet. 

 
Because we have panel data, we averaged our annual 

estimates of TE, capacity, and CU to smooth the 
abnormally high or low production levels.  The TE scores 
for CRS, VRS, and NIRS varied considerably among 
vessels and years (Table 3).  Under CRS, production was 
technically efficient for only seven observations; 
production was efficient for considerably more 
observations under VRS.  Relative to scale efficiency 
only ten observations were scale efficient between 1987 
and 1990.  We also found that for observations that were 
not scale efficient, production was operating at too small a 
scale or in the range of increasing returns to scale.   
 
Table 2.  Average days, man-days, catch, and abundancea 

 
Vessel Catch Days Man-days Abundance 

1 172,229.0 255.3 2,474.7 3.3 
2 127,733.3 248.5 2,410.4 2.5 
3 140,726.5 226.5 2,260.2 3.1 
4 135,843.3 255.8 2,443.9 2.6 
5 143,256.5 239.3 2,231.4 2.9 
6 169,924.8 258.8 2,336.0 3.2 
7 142,264.0 244.0 2,294.1 2.8 
8 137,132.5 242.5 2,357.8 2.8 
9 129,667.5 235.0 2,227.0 2.6 

 
aDays at sea is a measure of the number of days a vessel              
was at sea; Man-days equals the product of crew size and 
days at sea per year; stock abundance is a measure of 
number of baskets per tow per trip weighted by days per 
trip to obtain an annual measure. 

 
Because we have panel data, we averaged our annual 

estimates of TE, capacity, and CU to smooth the 
abnormally high or low production levels.  The TE scores 
for CRS, VRS, and NIRS varied considerably among 
vessels and years (Table 3).  Under CRS, production was 
technically efficient for only seven observations; 
production was efficient for considerably more 
observations under VRS.  Relative to scale efficiency, 
only ten observations were SE between 1987 and 1990.  
We also found that for observations that were not SE, 
production was operating at too small a scale or in the 
range of increasing returns to scale.   

 

Vessel GRT HP Dredge 
1 181 620 15 
2 125 520 13 
3 190 520 15 
4 124 620 13 
5 130 520 15 
6 135 520 15 
7 129 520 15 
8 137 520 15 
9 131 520 13 
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Table 3.  TE  by sea scallop vessel and year, 1987-1990     
 
 
Overall, we found that production was typically less 

than the capacity output levels (Table 4).  Annual average 
production by vessels 1,2, 4,6, and 7 did nearly equal the 
capacity output.  Overall, the nine-vessel fleet had the 
capability to harvest approximately 9% more per year 
than it actually did between 1987 and 1990.  Besides 
being technically inefficient, there was a general tendency 
to operate too few days and with a relative shortage of 
labor; most of the utilization ratios exceed 1.0 in value.   

 
Given that CU and the optimum input utilization ratios 

were close to 1.0, a Wilcoxon signed rank test was 
conducted to assess whether or not the estimated values 
were any different than the observed values. We used the 
non-parametric Wilcoxon signed rank test because we 
could not assume a normal distribution for our estimates. 

The corresponding z scores and two-tailed asymptotic 
significance levels () for capacity and utilization of days 
and man-days equaled, respectively, -4.86 (0.000), -3.252 
(0.001), and –0.487 (0.626).  We concluded that the mean 
difference between observed output and capacity output 
and between days and optimal days did not equal 0.0; we 
could not, however, reject that the mean difference 
between observed man-days and the man-days at full 
utilization equaled 0.0.   
 
Table 4. Annual mean capacity, CU, and input utilization 
 

Utilization Ratio  
Vessel 
 

 
Capacity 

 
CU Days Man-days 

1 178,347 0.99 1.14 1.08 
2 137,937 0.99 1.02 0.95 
3 170,459 0.87 1.51 1.35 
4 142,927 1.00 1.01 0.96 
5 158,504 0.96 1.11 1.06 
6 173,701 1.00 1.02 1.01 
7 155,161 0.99 1.07 1.01 
8 154,424 0.95 1.08 1.00 
9 143,879 0.97 1.10 1.03 
7.  Summary and Conclusions 

 
Estimation of harvesting capacity in fisheries will 

become increasingly important as nations address the 
problems associated with overharvesting.  Acceptable and 
practical definitions of capacity and methods for 
estimating capacity will have to be developed.  In this 
paper, we proposed the Johansen (1968) definition of 
capacity as a short-run concept.  We subsequently 
demonstrated how this concept could be estimated using 
the DEA framework proposed by F#re et al. (1989).  We 
demonstrated that the DEA framework imposes minimal 
assumptions on the underlying technology.  We also 
noted a limitation of DEA—it attributes all deviations 
from the frontier to technical inefficiency.  We suggested, 
however, that DEA might be  useful for estimating 
capacity in fisheries. We demonstrated many useful 
decompositions of TE that can provide information for 
fisheries management.  We concluded with an illustration 
of how DEA could be used to estimate and assess TE, 
capacity, CU, and optimum input utilization. 

 
An issue not discussed in this paper and that may be 

important for assessing capacity in fisheries is capacity at 
the fishery or industry level.  That is, how can we assess 
capacity at a more aggregate level such as the fishery or 
industry. If we only had aggregate time-series data, we 
could estimate capacity using DEA after adjusting for 
technical change; this approach, however, would likely 
yield estimates similar to those obtained from the peak-to-
peak approach (Kirkley and Squires 1999).  If detailed 
firm level data on input and output quantities were 
available, we could use the DEA approaches of F#re et al. 

Year Vessel TE-CRS TE-VRS TE-NIRS 
1987 1 1.01 1.00 1.01 
 2 1.05 1.00 1.05 
 3 1.11 1.00 1.11 
 4 1.16 1.00 1.16 
 5 1.10 1.00 1.10 
 6 1.00 1.00 1.00 
 7 1.09 1.00 1.09 
 8 1.05 1.00 1.05 
 9 1.18 1.00 1.18 
1988 1 1.00 1.00 1.00 
 2 1.16 1.10 1.16 
 3 1.08 1.03 1.08 
 4 1.01 1.00 1.01 
 5 1.01 1.01 1.01 
 6 1.02 1.01 1.02 
 7 1.09 1.07 1.09 
 8 1.02 1.01 1.02 
 9 1.01 1.01 1.01 
1989 1 1.06 1.02 1.06 
 2 1.08 1.06 1.08 
 3 1.04 1.04 1.04 
 4 1.00 1.00 1.00 
 5 1.08 1.05 1.08 
 6 1.05 1.01 1.05 
 7 1.08 1.05 1.08 
 8 1.02 1.00 1.02 
 9 1.15 1.00 1.15 
1990 1 1.02 1.02 1.02 
 2 1.00 1.00 1.00 
 3 1.00 1.00 1.11 
 4 1.02 1.00 1.02 
 5 1.06 1.02 1.06 
 6 1.01 1.00 1.01 
 7 1.07 1.00 1.07 
 8 1.11 1.04 1.11 
 9 1.00 1.00 1.00 
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(1992) and Dervaux et al. (2000) to estimate capacity at a 
higher level of aggregation.  These approaches not only 
facilitate the estimation of industry capacity for the short 
and long-run, they also provide information about the 
optimum allocation of inputs and outputs.  Considerably 
more work and analyses will have to be conducted, 
however, before we can conclude that these industry 
models are appropriate for assessing capacity in fisheries.   
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